Comparative anatomy of the electrosensory lateral line lobe of mormyrids: the mystery of the missing map in the genus Stomatorhinus (family: Mormyridae).
نویسندگان
چکیده
Fish in the family Mormyridae produce weak electric organ discharges that are used in orientation and communication. The peripheral and central anatomy of the electrosensory system has been well studied in the species Gnathonemus petersii, but comparative studies in other species are scarce. Here we report on one genus of mormyrid that displays a remarkable change in the electrosensory lateral line lobe (ELL), the hypertrophied rhombencephalic structure that receives primary electroreceptor input. Although all other mormyrids studied have three distinct zones on each side of the ELL, fish of the genus Stomatorhinus exhibit only two. Therefore, the two-zone ELL is a unique derived characteristic shared by Stomatorhinus. We examined the cutaneous electroreceptors that project to the ELL in Stomatorhinus. All three types of electroreceptors previously described for G. petersii were present, but there was a significant change in one type, the mormyromast. Both mormyromast sensory cell types (A- and B-cells) are present, but the B-cell is not innervated in Stomatorhinus. We conclude that, although all cutaneous sensory cells are present, the missing B-cell afferents account for the loss of the dorsolateral zone of the ELL, and therefore the loss of an entire sensory map. Because mormyromasts are involved in electrolocation behavior, this anatomical difference is probably related to differences in electrolocation abilities. Stomatorhinus could prove to be an excellent system for linking evolutionary changes in behavior with modifications in their neural substrates.
منابع مشابه
Structural organization of the mormyrid electrosensory lateral line lobe
The electrosensory lateral line lobe (ELL) of mormyrid teleosts is the first central stage in electrosensory input processing. It is a well-developed structure with six main layers, located in the roof of the rhombencephalon. Its main layers are, from superficial to deep, the molecular, ganglionic, plexiform, granular, intermediate and deep fiber layers. An important input arises from electrore...
متن کاملElectrosensory Response Mechanisms in Mormyrid Electric Fish 1
Mormyrid electric sh use mormyromast receptors in their skin to detect distortions in a self-generated electric eld. The electroreceptor a erents modulate neuronal activity in the electrosensory lateral line lobe (ELL), a cerebellum-like structure. In this study of the ELL's mormyromast region, computer simulations compare mechanisms responsible for the observed responses involved in active ele...
متن کاملProjection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
This paper describes the morphological, immunohistochemical, and synaptic properties of projection neurons in the highly laminated medial and dorsolateral zones of the mormyrid electrosensory lateral line lobe (ELL). These structures are involved in active electrolocation, i.e., the detection and localization of objects in the nearby environment of the fish on the basis of changes in the reaffe...
متن کاملIctal and Interictal Electroencephalography of Mesial and Lateral Temporal Lobe Epilepsy; A Comparative Study
Background: Epilepsy is considered as one of the most important disorders in neurology. Temporal lobe epilepsy is a form of epilepsy including two main types of mesial and lateral (neocortex). Objectives: Determination and comparison of electroencephalogram (EEG) pattern in the ictal and interictal phases of mesial and lateral temporal lobe epilepsy. Materials and Methods: This cross-sectiona...
متن کاملStability of negative-image equilibria in spike-timing-dependent plasticity.
We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by spike-timing-dependent plasticity (STDP). The model architecture closely follows the anatomy and physiology of the electrosensory lateral line lobe (ELL) of mormyrid electric fish. The ELL uses a spike-timing-dependent learning rule to form a negative image of the reafferent signal from the fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain, behavior and evolution
دوره 65 3 شماره
صفحات -
تاریخ انتشار 2005